Close Menu
  • Home
  • Business News
    • Entrepreneurship
  • Investments
  • Markets
  • Opinion
  • Politics
  • Startups
    • Stock Market
  • Trending
    • Technology
  • Online Jobs

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

Tech Entrepreneurship: Eliminating waste and eliminating scarcity

July 17, 2024

AI for Entrepreneurs and Small Business Owners

July 17, 2024

Young Entrepreneurs Succeed in Timor-Leste Business Plan Competition

July 17, 2024
Facebook X (Twitter) Instagram
  • Home
  • Business News
    • Entrepreneurship
  • Investments
  • Markets
  • Opinion
  • Politics
  • Startups
    • Stock Market
  • Trending
    • Technology
  • Online Jobs
Facebook X (Twitter) Instagram Pinterest
Prosper planet pulse
  • Home
  • Privacy Policy
  • About us
    • Advertise with Us
  • AFFILIATE DISCLOSURE
  • Contact
  • DMCA Policy
  • Our Authors
  • Terms of Use
  • Shop
Prosper planet pulse
Home»Technology»Children and adults produce distinct technology- and human-directed speech
Technology

Children and adults produce distinct technology- and human-directed speech

prosperplanetpulse.comBy prosperplanetpulse.comJuly 6, 2024No Comments11 Mins Read0 Views
Share Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


  • Hoy, M. B. Alexa, Siri, Cortana, and More: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88 (2018).

    PubMed 

    Google Scholar 

  • Olmstead, K. Nearly half of Americans use digital voice assistants, mostly on their smartphones. Pew Res. Cent. (2017).

  • Plummer, D. C. et al. ’Top Strategic Predictions for 2017 and Beyond: Surviving the Storm Winds of Digital Disruption’ Gartner Report G00315910 (Gartner. Inc, 2016).

    Google Scholar 

  • Fernald, A. Meaningful melodies in mothers’ speech to infants. in Nonverbal Vocal Communication: Comparative and Developmental Approaches, 262–282 (Cambridge University Press, 1992).

  • Grieser, D. L. & Kuhl, P. K. Maternal speech to infants in a tonal language: Support for universal prosodic features in motherese. Dev. Psychol. 24, 14 (1988).

    Google Scholar 

  • Hilton, C. B. et al. Acoustic regularities in infant-directed speech and song across cultures. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01410-x (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, C. et al. A systematic review and Bayesian meta-analysis of the acoustic features of infant-directed speech. Nat. Hum. Behav. 7, 114–133 (2023).

    PubMed 

    Google Scholar 

  • Uther, M., Knoll, M. A. & Burnham, D. Do you speak E-NG-LI-SH? A comparison of foreigner-and infant-directed speech. Speech Commun. 49, 2–7 (2007).

    Google Scholar 

  • Scarborough, R., Dmitrieva, O., Hall-Lew, L., Zhao, Y. & Brenier, J. An acoustic study of real and imagined foreigner-directed speech. in Proceedings of the International Congress of Phonetic Sciences, 2165–2168 (2007).

  • Burnham, D. K., Joeffry, S. & Rice, L. Computer-and human-directed speech before and after correction. in Proceedings of the 13th Australasian International Conference on Speech Science and Technology, 13–17 (2010).

  • Oviatt, S., MacEachern, M. & Levow, G.-A. Predicting hyperarticulate speech during human–computer error resolution. Speech Commun. 24, 87–110 (1998).

    Google Scholar 

  • Clark, H. H. & Murphy, G. L. Audience design in meaning and reference. In Advances in Psychology Vol. 9 (eds LeNy, J.-F. & Kintsch, W.) 287–299 (Elsevier, 1982).

    Google Scholar 

  • Hwang, J., Brennan, S. E. & Huffman, M. K. Phonetic adaptation in non-native spoken dialogue: Effects of priming and audience design. J. Mem. Lang. 81, 72–90 (2015).

    Google Scholar 

  • Tippenhauer, N., Fourakis, E. R., Watson, D. G. & Lew-Williams, C. The scope of audience design in child-directed speech: Parents’ tailoring of word lengths for adult versus child listeners. J. Exp. Psychol. Learn. Mem. Cogn. 46, 2123 (2020).

    Google Scholar 

  • Cohn, M., Ferenc Segedin, B. & Zellou, G. Acoustic-phonetic properties of Siri- and human-directed speech. J. Phon. 90, 101123 (2022).

    Google Scholar 

  • Cohn, M., Liang, K.-H., Sarian, M., Zellou, G. & Yu, Z. Speech rate adjustments in conversations with an Amazon Alexa Socialbot. Front. Commun. 6, 1–8 (2021).

    Google Scholar 

  • Cohn, M. & Zellou, G. Prosodic differences in human- and Alexa-directed speech, but similar local intelligibility adjustments. Front. Commun. 6, 1–13 (2021).

    Google Scholar 

  • Cohn, M., Mengesha, Z., Lahav, M. & Heldreth, C. African American English speakers’ pitch variation and rate adjustments for imagined technological and human addressees. JASA Express Lett. 4, 1–4 (2024).

    Google Scholar 

  • Raveh, E., Steiner, I., Siegert, I., Gessinger, I. & Möbius, B. Comparing phonetic changes in computer-directed and human-directed speech. in Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2019, 42–49 (TUDpress, 2019).

  • Siegert, I. & Krüger, J. “Speech melody and speech content didn’t fit together”—differences in speech behavior for device directed and human directed interactions. in Advances in Data Science: Methodologies and Applications, vol. 189, 65–95 (Springer, 2021).

  • Ibrahim, O. & Skantze, G. Revisiting robot directed speech effects in spontaneous human–human–robot interactions. in Human Perspectives on Spoken Human–Machine Interaction (2021).

  • Cowan, B. R., Branigan, H. P., Obregón, M., Bugis, E. & Beale, R. Voice anthropomorphism, interlocutor modelling and alignment effects on syntactic choices in human−computer dialogue. Int. J. Hum.-Comput. Stud. 83, 27–42 (2015).

    Google Scholar 

  • Kalashnikova, N., Hutin, M., Vasilescu, I. & Devillers, L. Do we speak to robots looking like humans as we speak to humans? A study of pitch in french human–machine and human–human interactions. in Companion Publication of the 25th International Conference on Multimodal Interaction, 141–145 (2023).

  • Lu, Y. & Cooke, M. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech Commun. 51, 1253–1262 (2009).

    Google Scholar 

  • Brumm, H. & Zollinger, S. A. The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148, 1173–1198 (2011).

    Google Scholar 

  • Nass, C., Steuer, J. & Tauber, E. R. Computers are social actors. in Proceedings of the SIGCHI Conference on Human factors in Computing Systems, 72–78 (ACM, 1994). https://doi.org/10.1145/259963.260288.

  • Nass, C., Moon, Y., Morkes, J., Kim, E.-Y. & Fogg, B. J. Computers are social actors: A review of current research. Hum. Values Des. Comput. Technol. 72, 137–162 (1997).

    Google Scholar 

  • Lee, K. M. Media equation theory. in The International Encyclopedia of Communication, vol. 1, 1–4 (Wiley, 2008).

  • Epley, N., Waytz, A. & Cacioppo, J. T. On seeing human: A three-factor theory of anthropomorphism. Psychol. Rev. 114, 864–886 (2007).

    PubMed 

    Google Scholar 

  • Waytz, A., Cacioppo, J. & Epley, N. Who sees human?: The Stability and importance of individual differences in anthropomorphism. Perspect. Psychol. Sci. 5, 219–232 (2010).

    PubMed 

    Google Scholar 

  • Urquiza-Haas, E. G. & Kotrschal, K. The mind behind anthropomorphic thinking: Attribution of mental states to other species. Anim. Behav. 109, 167–176 (2015).

    Google Scholar 

  • Ernst, C.-P. & Herm-Stapelberg, N. Gender Stereotyping’s Influence on the Perceived Competence of Siri and Co. in Proceedings of the 53rd Hawaii International Conference on System Sciences, 4448–44453 (2020).

  • Cohn, M., Ferenc Segedin, B. & Zellou, G. Imitating Siri: Socially-mediated alignment to device and human voices. in Proceedings of International Congress of Phonetic Sciences, 1813–1817 (2019).

  • Cohn, M., Predeck, K., Sarian, M. & Zellou, G. Prosodic alignment toward emotionally expressive speech: Comparing human and Alexa model talkers. Speech Commun. 135, 66–75 (2021).

    Google Scholar 

  • Cohn, M., Sarian, M., Predeck, K. & Zellou, G. Individual variation in language attitudes toward voice-AI: The role of listeners’ autistic-like traits. in Proceedings of Interspeech 2020, 1813–1817 (2020). https://doi.org/10.21437/Interspeech.2020-1339.

  • Tarłowski, A. & Rybska, E. Young children’s inductive inferences within animals are affected by whether animals are presented anthropomorphically in films. Front. Psychol. 12, 634809 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gjersoe, N. L., Hall, E. L. & Hood, B. Children attribute mental lives to toys when they are emotionally attached to them. Cogn. Dev. 34, 28–38 (2015).

    Google Scholar 

  • Moriguchi, Y. et al. Imaginary agents exist perceptually for children but not for adults. Palgrave Commun. 5, 1–9 (2019).

    Google Scholar 

  • Taylor, M. & Mottweiler, C. M. Imaginary companions: Pretending they are real but knowing they are not. Am. J. Play 1, 47–54 (2008).

    Google Scholar 

  • Read, J. C. & Bekker, M. M. The nature of child computer interaction. in Proceedings of the 25th BCS conference on human-computer interaction, 163–170 (British Computer Society, 2011).

  • Lovato, S. & Piper, A. M. Siri, is this you?: Understanding young children’s interactions with voice input systems. in Proceedings of the 14th International Conference on Interaction Design and Children, 335–338 (ACM, 2015).

  • Garg, R. & Sengupta, S. He is just like me: A study of the long-term use of smart speakers by parents and children. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1–24 (2020).

    Google Scholar 

  • Gambino, A., Fox, J. & Ratan, R. A. Building a stronger CASA: Extending the computers are social actors paradigm. Hum. Mach. Commun. 1, 71–85 (2020).

    Google Scholar 

  • Mayo, C., Aubanel, V. & Cooke, M. Effect of prosodic changes on speech intelligibility. in Thirteenth Annual Conference of the International Speech Communication Association, 1706–1709 (2012).

  • Li, Q. & Russell, M. J. Why is automatic recognition of children’s speech difficult? in Interspeech, 2671–2674 (2001).

  • Russell, M. & D’Arcy, S. Challenges for computer recognition of children’s speech. in Workshop on Speech and Language Technology in Education (2007).

  • Kennedy, J. et al. Child speech recognition in human-robot interaction: Evaluations and recommendations. in Proceedings of the 2017 ACM/IEEE international conference on human-robot interaction, 82–90 (2017).

  • Kim, M. K. et al. Examining voice assistants in the context of children’s speech. Int. J. Child Comput. Interact. 34, 100540 (2022).

    Google Scholar 

  • Mallidi, S. H. et al. Device-directed utterance detection. in Interspeech 2018 (2018).

  • Swerts, M., Litman, D. & Hirschberg, J. Corrections in spoken dialogue systems. in Sixth International Conference on Spoken Language Processing (2000).

  • Stent, A. J., Huffman, M. K. & Brennan, S. E. Adapting speaking after evidence of misrecognition: Local and global hyperarticulation. Speech Commun. 50, 163–178 (2008).

    Google Scholar 

  • Lindblom, B. Explaining phonetic variation: A sketch of the H&H theory. in Speech Production and Speech Modelling, vol. 55, 403–439 (Springer, 1990).

  • Szendrői, K., Bernard, C., Berger, F., Gervain, J. & Höhle, B. Acquisition of prosodic focus marking by English, French, and German three-, four-, five-and six-year-olds. J. Child Lang. 45, 219–241 (2018).

    PubMed 

    Google Scholar 

  • Esteve-Gibert, N., Lœvenbruck, H., Dohen, M. & d’Imperio, M. Pre-schoolers use head gestures rather than prosodic cues to highlight important information in speech. Dev. Sci. 25, e13154 (2022).

    PubMed 

    Google Scholar 

  • Cheng, Y., Yen, K., Chen, Y., Chen, S. & Hiniker, A. Why doesn’t it work? Voice-driven interfaces and young children’s communication repair strategies. in Proceedings of the 17th ACM Conference on Interaction Design and Children, 337–348 (ACM, 2018).

  • Bell, L. & Gustafson, J. Child and adult speaker adaptation during error resolution in a publicly available spoken dialogue system. in Eighth European Conference on Speech Communication and Technology (2003).

  • Ramirez, A., Cohn, M., Zellou, G. & Graf Estes, K. Es una pelota, do you like the ball?” Pitch in Spanish-English Bilingual Infant Directed Speech. (under review).

  • Picheny, M. A., Durlach, N. I. & Braida, L. D. Speaking clearly for the hard of hearing I: Intelligibility differences between clear and conversational speech. J. Speech Lang. Hear. Res. 28, 96–103 (1985).

    CAS 

    Google Scholar 

  • Scarborough, R. & Zellou, G. Clarity in communication:“Clear” speech authenticity and lexical neighborhood density effects in speech production and perception. J. Acoust. Soc. Am. 134, 3793–3807 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Burnham, D. et al. Are you my little pussy-cat? Acoustic, phonetic and affective qualities of infant-and pet-directed speech. in Fifth International Conference on Spoken Language Processing Paper 0916 (1998).

  • Burnham, D., Kitamura, C. & Vollmer-Conna, U. What’s new, pussycat? On talking to babies and animals. Science 296, 1435–1435 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Zellou, G., Cohn, M. & FerencSegedin, B. Age- and gender-related differences in speech alignment toward humans and voice-AI. Front. Commun. 5, 1–11 (2021).

    Google Scholar 

  • Song, J. Y., Pycha, A. & Culleton, T. Interactions between voice-activated AI assistants and human speakers and their implications for second-language acquisition. Front. Commun. 7, 9475 (2022).

    Google Scholar 

  • Koenecke, A. et al. Racial disparities in automated speech recognition. Proc. Natl. Acad. Sci. 117, 7684–7689 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wassink, A. B., Gansen, C. & Bartholomew, I. Uneven success: Automatic speech recognition and ethnicity-related dialects. Speech Commun. 140, 50–70 (2022).

    Google Scholar 

  • Sachs, J. & Devin, J. Young children’s use of age-appropriate speech styles in social interaction and role-playing*. J. Child Lang. 3, 81–98 (1976).

    Google Scholar 

  • Syrett, K. & Kawahara, S. Production and perception of listener-oriented clear speech in child language. J. Child Lang. 41, 1373–1389 (2014).

    PubMed 

    Google Scholar 

  • Wellman, H. M. Making Minds: How Theory of Mind Develops (Oxford University Press, 2014).

    Google Scholar 

  • Slaughter, V. Theory of mind in infants and young children: A review. Aust. Psychol. 50, 169–172 (2015).

    Google Scholar 

  • Severson, R. L. & Lemm, K. M. Kids see human too: Adapting an individual differences measure of anthropomorphism for a child sample. J. Cogn. Dev. 17, 122–141 (2016).

    Google Scholar 

  • Severson, R. L. & Woodard, S. R. Imagining others’ minds: The positive relation between children’s role play and anthropomorphism. Front. Psychol. https://doi.org/10.3389/fpsyg.2018.02140 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siegert, I. et al. Voice assistant conversation corpus (VACC): A multi-scenario dataset for addressee detection in human–computer-interaction using Amazon’s ALEXA. in Proceeding of the 11th LREC (2018).

  • Garnier, M., Ménard, L. & Alexandre, B. Hyper-articulation in Lombard speech: An active communicative strategy to enhance visible speech cues?. J. Acoust. Soc. Am. 144, 1059–1074 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Trujillo, J., Özyürek, A., Holler, J. & Drijvers, L. Speakers exhibit a multimodal Lombard effect in noise. Sci. Rep. 11, 16721 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gampe, A., Zahner-Ritter, K., Müller, J. J. & Schmid, S. R. How children speak with their voice assistant Sila depends on what they think about her. Comput. Hum. Behav. 143, 107693 (2023).

    Google Scholar 

  • Gessinger, I., Cohn, M., Zellou, G. & Möbius, B. Cross-Cultural Comparison of Gradient Emotion Perception: Human vs. Alexa TTS Voices. Proceedings Interspeech 2022 23rd Conference International Speech Communication Association, 4970–4974 (2022).

  • Kornai, A. Digital language death. PLoS ONE 8, e77056 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaugg, I. A., Hossain, A. & Molloy, B. Digitally-disadvantaged languages. Internet Policy Rev. 11, 1654 (2022).

    Google Scholar 

  • Kuperman, V., Stadthagen-Gonzalez, H. & Brysbaert, M. Age-of-acquisition ratings for 30,000 English words. Behav. Res. Methods 44, 978–990 (2012).

    PubMed 

    Google Scholar 

  • Wittenburg, P., Brugman, H., Russel, A., Klassmann, A. & Sloetjes, H. ELAN: A professional framework for multimodality research. in 5th International Conference on Language Resources and Evaluation (LREC 2006), 1556–1559 (2006).

  • Boersma, P. & Weenink, D. Praat: Doing Phonetics by Computer. (2021).

  • DiCanio, C. Extract Pitch Averages. https://www.acsu.buffalo.edu/~cdicanio/scripts/Get_pitch.praat (2007).

  • Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 

  • Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 01 (2017).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016).



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    prosperplanetpulse.com
    • Website

    Related Posts

    Technology

    Empowered Funds LLC Increases Holdings in Micron Technology, Inc. (NASDAQ:MU)

    July 14, 2024
    Technology

    Portland Film, Animation and Technology Festival Returns with Over 100 Films

    July 14, 2024
    Technology

    Quest from the infinite stairs

    July 14, 2024
    Technology

    Intel and State of Oregon Advance National Semiconductor Technology Center

    July 14, 2024
    Technology

    Leveraging Technology to Boost Malaysia’s Sports Economy – OpEd – Eurasia Review

    July 14, 2024
    Technology

    Digital technology can help avoid medical malpractice lawsuits: Judge Madhav Devi

    July 14, 2024
    Add A Comment
    Leave A Reply Cancel Reply

    Subscribe to News

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    Editor's Picks

    The rule of law is more important than feelings about Trump | Opinion

    July 15, 2024

    OPINION | Biden needs to follow through on promise to help Tulsa victims

    July 15, 2024

    Opinion | Why China is off-limits to me now

    July 15, 2024

    Opinion | Fast food chains’ value menu wars benefit consumers

    July 15, 2024
    Latest Posts

    ATLANTIC-ACM Announces 2024 U.S. Business Connectivity Service Provider Excellence Awards

    July 10, 2024

    Costco’s hourly workers will get a pay raise. Read the CEO memo.

    July 10, 2024

    Why a Rockland restaurant closed after 48 years

    July 10, 2024

    Stay Connected

    Twitter Linkedin-in Instagram Facebook-f Youtube

    Subscribe